
cox
Release 0.1

Oct 10, 2020

Contents

1 Quick Logging Overview 3
1.1 Walkthroughs . 3
1.2 Submodules . 8

Python Module Index 15

Index 17

i

ii

cox, Release 0.1

Cox is a lightweight, serverless framework for designing and managing experiments. Inspired by our own struggles
with ad-hoc filesystem-based experiment collection, and our inability to use heavy-duty frameworks, Cox aims to be
a minimal burden while inducing more organization. Created by Logan Engstrom and Andrew Ilyas.

Cox works by helping you easily log, collect, and analyze experimental results.

Why “Cox”? (Aside): The name Cox draws both from Coxswain, the person in charge of steering the boat in a rowing
crew, and from the name of Gertrude Cox, a pioneer of experimental design.

Contents 1

https://twitter.com/logan_engstrom
https://twitter.com/andrew_ilyas
https://en.wikipedia.org/wiki/Coxswain
https://en.wikipedia.org/wiki/Gertrude_Mary_Cox

cox, Release 0.1

2 Contents

CHAPTER 1

Quick Logging Overview

The cox logging system is designed for dealing with repeated experiments. The user defines schemas for Pandas
dataframes that contain all the data necessary for each experiment instance. Each experiment ran corresponds to a
data store, and each specified dataframe from above corresponds to a table within this store. The experiment stores are
organized within the same directory. Cox has a number of utilities for running and collecting data from experiments
of this nature.

1.1 Walkthroughs

1.1.1 Walkthrough 1: Logging and Reading Data

Note: All of the code for this walkthrough is available here

In this walkthrough, we’ll be starting with the following simple piece of code, which tries to finds the minimum of a
quadratic function:

import sys

def f(x):
return (x - 2.03)**2 + 3

x = ...
tol = ...
step = ...

for _ in range(1000):
Take a uniform step in the direction of decrease
if f(x + step) < f(x - step):

x += step
else:

x -= step

(continues on next page)

3

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://github.com/MadryLab/cox/blob/master/examples/logging_example.py

cox, Release 0.1

(continued from previous page)

If the difference between the directions
is less than the tolerance, stop
if f(x + step) - f(x - step) < tol:

break

Initializing stores

Logging in Cox is done through the Store class, which can be created as follows:

from cox.store import Store
rest of program here...
store = Store(OUT_DIR)

Upon construction, the Store instance creates a directory with a random uuid generated name in OUT_DIR, a
HDFStore for storing data, some logging files, and a tensorboard directory (named tensorboard). Therefore,
after we run this command, our OUT_DIR directory should look something like this:

$ ls OUT_DIR
7753a944-568d-4cc2-9bb2-9019cc0b3f49
$ ls 7753a944-568d-4cc2-9bb2-9019cc0b3f49
save store.h5 tensorboard

The experiment ID string 7753a944-568d-4cc2-9bb2-9019cc0b3f49 was autogenerated. If we wanted
to name the experiment something else, we could pass it as the second parameter; i.e. making a store with
Store(OUT_DIR, 'exp1') would make the corresponding experiment ID exp1.

Creating tables

The next step is to declare the data we want to store via _tables_. We can add arbitrary tables according to our needs,
but we need to specify the structure ahead of time by passing the schema. In our case, we will start out with just a
simple metadata table containing the parameters used to run an instance of the program above, along with a table for
writing the result:

store.add_table('metadata', {
'step_size': float,
'tolerance': float,
'initial_x': float,
'out_dir': str

})

store.add_table('result', {
'final_x': float,
'final_opt':float

})

Each table corresponds exactly to a Pandas dataframe found in an HDFStore object.

A note on serialization

Cox supports basic object types (like float, int, str, etc) along with any kind of serializable object (via dill
or using PyTorch’s serialization method). In particular, if we want to serialize an object we can pass one of the
following types: cox.store.[OBJECT|PICKLE|PYTORCH_STATE] as the type value that is mapped to in the

4 Chapter 1. Quick Logging Overview

https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.html

cox, Release 0.1

schema dictionary. cox.store.PYTORCH_STATE is particularly useful for dealing with PyTorch objects like
model weights. In detail: OBJECT corresponds to storing the object as a serialized string in the table, PICKLE
corresponds to storing the object as a serialized string on disk in a separate file, and PYTORCH_STATE corresponds
to storing the object as a serialized string on disk using torch.save. Note that saving large objects using OBJECT
is not recommended as it will adversely affect loading times.

Logging

Now that we have a table, we can write rows to it! Logging in Cox is done in a row-by-row manner: at any time, there
is a working row that can be appended to/updated; the row can then be flushed (i.e. written to the file), which starts a
new (empty) working row. The relevant commands are:

This updates the working row, but does not write it permenantly yet!
store['result'].update_row({

"final_x": 3.0
})

This updates it again
store['result'].update_row({

"final_opt": 3.9409
})

Write the row permenantly, and start a new working row!
store['result'].flush_row()

A shortcut for appending a row directly
store['metadata'].append_row({

'step_size': 0.01,
'tolerance': 1e-6,
'initial_x': 1.0,
'out_dir': '/tmp/'

})

Incremental updates with update_row

Subsequent calls to update_row() will edit the same working row. This is useful if different parts of the row are
computed in different functions/locations in the code, as it removes the need for passing statistics around all over the
place.

Reading data

By populating tables rows, we are really just adding rows to an underlying HDFStore table. If we want to read the
store later, we can simply open another store at the same location, and then read dataframes with simple commands:

Note that EXP_ID is the directory the store wrote to in OUT_DIR
s = Store(OUT_DIR, EXP_ID)

Read tables we wrote earlier
metadata = s['metadata'].df
result = s['result'].df

print(result)

Inspecting the result table, we see the expected result in our Pandas dataframe!:

1.1. Walkthroughs 5

cox, Release 0.1

final_x final_opt
0 3.000000 3.940900

CollectionReader : Reading many experiments at once

Now, in our quadratic example, we aren’t just going to try one set of parameters, we are going to try a number of dif-
ferent values for step_size, tolerance, and initial_x (we haven’t yet discovered convex optimization). To
do this, we just run the code above a bunch of times with the desired hyperparameters, supplying the same OUT_DIR
for all of the runs (recall that cox will automatically create different, uuid-named folders inside OUT_DIR for each
experiment).

Imagine that we have done so (using any standard tool, e.g. sbatch in SLURM, sklearn grid search, or even a for loop
like in our example file), and that we have a directory full of stores:

$ ls $OUT_DIR
drwxr-xr-x 6 engstrom 0424807a-c9c0-4974-b881-f927fc5ae7c3
...
...
drwxr-xr-x 6 engstrom e3646fcf-569b-46fc-aba5-1e9734fedbcf
drwxr-xr-x 6 engstrom f23d6da4-e3f9-48af-aa49-82f5c017e14f

Now, we want to collect all the results from this directory. We can use cox.readers.CollectionReader to
read all the tables together in a concatenated pandas table.:

from cox.readers import CollectionReader
reader = CollectionReader(OUT_DIR)
print(reader.df('result'))

Which gives us all the result tables concatenated together as a Pandas DataFrame for easy manipulation:

final_x final_opt exp_id
0 1.000000 4.060900 ed892c4f-069f-4a6d-9775-be8fdfce4713
0 0.000010 7.120859 44ea3334-d2b4-47fe-830c-2d13dc0e7aaa
...
...
0 2.000000 3.000900 f031fc42-8788-4876-8c96-2c1237ceb63d
0 -14.000000 259.960900 73181d27-2928-48ec-9ac6-744837616c4b

pandas has a ton of powerful utilities for searching through and manipulating DataFrames. We recommend looking
at their docs for information on how to do this. For convenience, we’ve given a few simple examples below:

df = reader.df('result')
m_df = reader.df('metadata')

Filter by experiments have step_size less than 1.0
exp_ids = set(m_df[m_df['step_size'] < 1.0]['exp_id].tolist())
print(df[df['exp_id'].isin(exp_ids)]) # The filtered DataFrame

Finding which experiment has the lowest final_opt
exp_id = df[df['final_opt'] == min(df['final_opt'].tolist())]['exp_id'].tolist()[0]
print(m_df[m_df['exp_id'] == exp_id]) # Metadata of the best experiment

1.1.2 Walkthrough 2: Using cox with tensorboardX

Note: As with the first walkthrough, a working example file with all of these commands can be found here

6 Chapter 1. Quick Logging Overview

examples/logging_example.py
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/
1.html
https://github.com/MadryLab/cox/blob/master/examples/tb_example.py

cox, Release 0.1

Here, we’ll show how to use cox and tensorboardX in unison for logging. We’ll use the following simple running
example:

from cox.store import Store

for slope in range(5):
s = Store(OUT_DIR) # Create OUT_DIR/RANDOM_UUID
s.add_table('line_graphs', {'mx': int, 'mx^2': int})
s.add_table('metadata', {'slope': int})
s['metadata'].append_row({'slope': slope})

GOAL: plot and log the lines "y=slope*x" and "y=slope*x^2"

As previously mentioned, cox.store.Store objects also automatically creates a tensorboard folder that is
written to via the tensorboardX library. A created cox.store.Store object will actually expose a writer prop-
erty that is a fully functioning SummaryWriter object. That means we can plot the lines we want in TensorBoard as
follows:

for x in range(10):
s.writer.add_scalar('line', slope*x, x)
s.writer.add_scalar('parabola', slope*(x**2), x)

Unfortunately, TensorBoard data is quite hard to read/manipulate through means other than the TensorBoard interface.
For convenience, the Store object also provides the ability to write to a table and the tensorboardX writer at the
same time through the cox.store.Store.log_table_and_tb() function, meaning that we can replace the
above with:

Does the same thing as the example above but also stores the results in a
readable 'line_graphs' table
for x in range(10):

s.log_table_and_tb('line_graphs', {'mx': slope*x, 'mx^2': slope*(x**2)})
s['line_graphs'].flush_row()

Viewing multiple tensorboards with cox.tensorboard_view

Note: the python3 -m cox.tensorboard_view command can be called as cox-tensorboard **from
the command line

Continuing with our running example, we may now want to visually compare TensorBoards across multiple parameter
settings. Fortunately, cox provides utilities for comparing TensorBoards across experiments in a readable way. In our
example, where we made a Store object and a table called metadata where we stored hyperparameters. We also
showed how to integrate TensorBoard logging via tensorboardX. We’ll now use the cox.tensorboard_view
utility to view the tensorboards from multiple jobs at once (this is useful when comparing parameters for a grid search).

The way to achieve this is through the cox.tensorboard_view command, which is called as python3 -m
cox.tensorboard_view with the following arguments:

--logdir: (required) the directory where all of the stores are located

--port (default 6006) the port on which to run the tensorboard server

--metadata-table (default “metadata”) the name of the table where the hyperparameters are saved (i.e. “meta-
data” in our running example). This should be a table with a single row, as in our running example.

--filter-param (optional) Can be used more than once, filters out stores from the tensorboard aggregation.
For each argument of the form --filter-param PARAM_NAME PARAM_REGEX, only the stores where
PARAM_NAME in the metadata matches PARAM_REGEX will be kept.

1.1. Walkthroughs 7

https://tensorboardx.readthedocs.io/en/latest/tensorboard.html
https://tensorboardx.readthedocs.io/en/latest/tensorboard.html#tensorboardX.SummaryWriter

cox, Release 0.1

--format-str (required) How to display the name of the stores. Recall that each store has a uuid-generated
name by default. This argument determines how their names will be displayed in the TensorBoard. Curly
braces represent parameter values, and the uuid will always be appended to the name. So in our running ex-
ample, --format-str ss-{step_size} will result in a TensorBoard with names of the form ss-1.
0-ed892c4f-069f-4a6d-9775-be8fdfce4713.

So in our running example, if we run the following command, displaying the slope in the TensorBoard names and
filtering for slopes between 1 and 3:

python3 -m cox.tensorboard_view --logdir OUT_DIR --format-str slope-{slope} \
--filter-param slope [1-3] --metadata-table metadata

or:

cox-tensorboard --logdir OUT_DIR --format-str slope-{slope} \
--filter-param slope [1-3] --metadata-table metadata

then navigating to localhost:6006 yields:

1.2 Submodules

1.2.1 cox.readers module

class cox.readers.CollectionReader(directory, log_warnings=True, mode=’r’,
exp_filter=None, skip_errs=False)

Bases: object

Class for collecting, viewing, and manipulating directories of stores.

Initialize the CollectionReader object. This will immediately open each store in directory and see which table
are available for viewing.

8 Chapter 1. Quick Logging Overview

cox, Release 0.1

Parameters

• directory (str) – Path to directory with stores in it. The directory should contain
directories corresponding to stores.

• log_warnings (bool) – Log warnings if tables with the same name have different
schemas

• mode (str) – mode to open stores in. Default ‘r’ (read only), if you want to write you will
need to make the mode ‘a’ (append only) or ‘w’ (write).

• exp_filter (method) – Call exp_filter on the experiment id of each store, excludes
store from collection if it returns false.

close()
Closes all the stores opened by the collection reader.

df(key, append_exp_id=True, keep_serialized=[], union_schemas=False, exp_filter=None,
skip_errors=False)
Makes a large concatenated PD dataframe from all the stores’ tables matching this table key.

Parameters

• key (str) – name of table to collect

• append_exp_id (bool) – if true, append corresponding experiment id to each row.

• keep_serialized (list of strings) – list corresponding to column names. If
in this list, do not unserialize the string within the column name and make it a python
object within the pandas table.

• union_schemas (bool) – If true, union columns of all collected tables, otherwise error
out.

• exp_filter (method) – If function of exp_id returns false, ignore this store. Other-
wise include.

• skip_errors (bool) – If true, skip an experiment upon error occurs.

Returns Concatenated dataframe of all corresponding tables in the dataframes matching the key.

1.2.2 cox.store module

class cox.store.Store(storage_folder, exp_id=None, new=False, mode=’a’)
Bases: object

Serializes and saves data from experiment runs. Automatically makes a tensorboard. Access the tensorboard
field, and refer to the TensorboardX documentation for more information about how to manipulate it (it is a
tensorboardX object).

Directly saves: int, float, torch scalar, string Saves and links: np.array, torch tensor, python object (via pickle or
pytorch serialization)

Note on python object serialization: you can choose one of three options to serialize using: OBJECT (store
as python serialization inline), PICKLE (store as python serialization on disk), or PYTORCH_STATE (save
as pytorch serialization on disk). All these types are represented as properties, i.e. store_instance.
PYTORCH_STATE. You will need to manually decode the objects using the static methods found in
the Table class (get_pytorch_state, get_object, get_pickle), or use a cox.readers.
CollectionReader which will handle this for you.

Make new experiment store in storage_folder, within its subdirectory exp_id (if not none). If an exper-
iment exists already with this corresponding directory, open it for reading.

1.2. Submodules 9

cox, Release 0.1

Parameters

• storage_folder (str) – parent folder in which we will put a folder with all our exper-
iment data (this store).

• exp_id (str) – dir name in storage_folder under which we will store experimental
data.

• new (str) – enforce that this store has never been created before.

• mode (str) – mode for accessing tables. a is append only, r is read only, w is write.

OBJECT = '__object__'
Python serialized datatype (saved as string in the h5 table—not recommended for large objects as these
objects must be loaded along with the table)

PICKLE = '__pickle__'
Pickle datatype (saved on disk and referenced from the table—recommended for larger objects)

PYTORCH_STATE = '__pytorch_state__'
PyTorch state, e.g. from model.state_dict() (saved on disk and linked)

add_table(table_name, schema)
Add a new table to the experiment.

Parameters

• table_name (str) – a name for the table

• schema (dict) – a dict for the schema of the table. The entries should be of the form
name:type. For example, if we wanted to add a float column in the table named acc, we
would have an entry 'acc':float.

Returns The table object of the new table.

add_table_like_example(table_name, example, alternative=’__object__’)
Add a new table to the experiment, using an example dictionary as the basis for the types of the columns.

Parameters

• table_name (str) – a name for the table

• example (dict) – example for the schema of the table. Make a table with columns with
types corresponding to the types of the objects in the dictionary.

• alternative (self.OBJECT|self.PICKLE|self.PYTORCH_STATE) – how
to store columns that are python objects.

close()
Closes underlying HDFStore of this store.

get_table(table_id)
Gets table with key table_id.

Parameters table_id (str) – id of table to get from this store.

Returns The corresponding table (Table object).

log_table_and_tb(table_name, update_dict, summary_type=’scalar’)
Log to a table and also a tensorboard.

Parameters

• table_name (str) – which table to log to

10 Chapter 1. Quick Logging Overview

cox, Release 0.1

• update_dict (dict) – values to log and store as a dictionary of column mapping to
value.

• summary_type (str) – what type of summary to log to tensorboard as

class cox.store.Table(name, schema, table_obj_dir, store, has_initialized=False)
Bases: object

A class representing a single storer table, to be written to by the experiment. This is essentially a single HDFS-
tore table.

Create a new Table object.

Parameters

• name (str) – name of table

• schema (dict) – schema of table (as described in cox.store.Store class)

• table_obj_dir (str) – where to store serialized objects on disk store (Store) : parent
store.

• has_initialized (bool) – has this table been created yet.

append_row(data)
Write a dictionary with format column name:value as a row to the table. Must have a value for each
column. See update_row() for more mechanics.

Parameters data (dict) – dictionary with format column name:value.

df
Access the underlying pandas dataframe for this table.

flush_row()
Writes the current row we have staged (using update_row()) to the table. Another row is immediately
staged for update_row() to act on.

get_object(s)
Unserialize object of store.OBJECT type (a pickled object stored as a string in the table).

Parameters s (str) – pickle string to unpickle into a python object.

get_pickle(uid)
Unserialize object of store.PICKLE type (a pickled object stored as a string on disk).

Parameters uid (str) – identifier corresponding to stored object in the table.

get_state_dict(uid, **kwargs)
Unserialize object of store.PYTORCH_STATE type (object stored using pytorch’s serialization system).

Parameters uid (str) – identifier corresponding to stored object in the table.

nrows
How many rows this table has.

schema
Access the underlying schema for this table.

update_row(data)
Update the currently considered row in the data store. Our database is append only using the cox.
store.Table API. We can update this single row as much as we desire, using column:value mappings
in data. Eventually, the currently considered row must be written to the database using cox.store.
Table.flush_row(). This model allows for writing rows easily when not all the values are known in
a single context. Each data object does not need to contain every column, but by the time that the row is
flushed every column must obtained a value. This update model is stateful.

1.2. Submodules 11

cox, Release 0.1

Python primitives (int, float, str, bool), and their numpy equivalents are written automatically to
the row. All other objects are serialized (see Store).

Parameters data (dict) – a dictionary with format column name:value.

cox.store.schema_from_dict(d, alternative=’__object__’)
Given a dictionary mapping column names to values, make a corresponding schema.

Parameters

• d (dict) – dict of values we are going to infer the schema from

• alternative (self.OBJECT|self.PICKLE|self.PYTORCH_STATE) – how to
store columns that are python objects.

1.2.3 cox.tensorboard_view module

cox.tensorboard_view.main()
This function is meant to be run via command line (see Walkthrough 2 for more information.

1.2.4 cox.utils module

class cox.utils.Parameters(params)
Bases: object

Parameters class, just a nice way of accessing a dictionary

ps = Parameters({"a": 1, "b": 3})
ps.A # returns 1

as_dict()

cox.utils.consistent(old, new)
Asserts that either first argument is None or both arguments are equal, and returns the non-None argument.

cox.utils.has_tensorboard(dirname)
Given a directory path, return whether or not it has a tensorboard directory in it.

Parameters dirname (str) – path to directory

Returns Whether or not the directory has a “tensorboard” folder in it.

cox.utils.mkdirp(x, should_msg=False)
Tries to make a directory, but doesn’t error if the directory exists/can’t be created.

cox.utils.obj_to_string(obj)
Serialize an object to a string

cox.utils.override_json(args, json_path, check_consistency=False)
Overrides the null values in an arguments object with values extracted from a JSON file.

Parameters

• args (object) – A python object with the arguments as properties.

• json_path (str) – Path to the JSON file with which to override.

• check_consistency (bool) – If true, make sure that the keys in the JSON file and the
args object match up exactly

Returns A new args object with appropriately overriden None values.

12 Chapter 1. Quick Logging Overview

https://cox.readthedocs.io/en/latest/examples/2.html

cox, Release 0.1

cox.utils.string_to_obj(s)
Unserialize a string back into an object.

1.2. Submodules 13

cox, Release 0.1

14 Chapter 1. Quick Logging Overview

Python Module Index

c
cox.readers, 8
cox.store, 9
cox.tensorboard_view, 12
cox.utils, 12

15

cox, Release 0.1

16 Python Module Index

Index

A
add_table() (cox.store.Store method), 10
add_table_like_example() (cox.store.Store

method), 10
append_row() (cox.store.Table method), 11
as_dict() (cox.utils.Parameters method), 12

C
close() (cox.readers.CollectionReader method), 9
close() (cox.store.Store method), 10
CollectionReader (class in cox.readers), 8
consistent() (in module cox.utils), 12
cox.readers (module), 8
cox.store (module), 9
cox.tensorboard_view (module), 12
cox.utils (module), 12

D
df (cox.store.Table attribute), 11
df() (cox.readers.CollectionReader method), 9

F
flush_row() (cox.store.Table method), 11

G
get_object() (cox.store.Table method), 11
get_pickle() (cox.store.Table method), 11
get_state_dict() (cox.store.Table method), 11
get_table() (cox.store.Store method), 10

H
has_tensorboard() (in module cox.utils), 12

L
log_table_and_tb() (cox.store.Store method), 10

M
main() (in module cox.tensorboard_view), 12
mkdirp() (in module cox.utils), 12

N
nrows (cox.store.Table attribute), 11

O
obj_to_string() (in module cox.utils), 12
OBJECT (cox.store.Store attribute), 10
override_json() (in module cox.utils), 12

P
Parameters (class in cox.utils), 12
PICKLE (cox.store.Store attribute), 10
PYTORCH_STATE (cox.store.Store attribute), 10

S
schema (cox.store.Table attribute), 11
schema_from_dict() (in module cox.store), 12
Store (class in cox.store), 9
string_to_obj() (in module cox.utils), 12

T
Table (class in cox.store), 11

U
update_row() (cox.store.Table method), 11

17

	Quick Logging Overview
	Walkthroughs
	Submodules

	Python Module Index
	Index

